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Abstract

The graphical formalism of Petri Nets (PNs) is established on a strong mathematical foundation that can be applied in systems

speci®cation, analysis and veri®cation. However, classical (low-level) models su�er from the state explosion problem as resulting

PNs become larger. Thus, their ability to represent and analyze realistic large scale systems is reduced. High-level PNs have been

introduced in order to extend the modeling power of low-level models. This paper presents an assessment of high-level PNs from an

engineering perspective. A set of categories is proposed for classifying several extensions presented in the literature. Models which

belong to the same category are compared by discussing the formalism, the descriptive power and the inherent limitations of each.

All categories are compared using a set of general criteria including compactness, ease of analysis, degree of supporting re®nement/

abstraction and specifying communication. The modeling power of representative models of each category is discussed by presenting

illustrative application examples. Ó 1998 Elsevier Science Inc. All rights reserved.
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1. Introduction

Petri Nets (PNs), introduced by Petri (1962) 1, are a
powerful graphical modeling tool with ®rmly incorpo-
rated mathematical foundations that represent a system
as a set of interacting active and passive entities. Active
entities are called transitions; passive entities are called
places (Reisig, 1992). PNs embody the characteristics of
both ®nite-state machines and bipartite directed graphs
and thus, they can express state transitions caused by
events, as well as activities that proceed in parallel. A
PN is graphically represented as a bipartite, weighted,
directed graph with two types of nodes, which stand for
transitions (rectangles) and places (circles), and arcs
from a node of one type to a node of the other type. An
arc does not represent a system component, but sym-
bolizes a relationship between components. Items used
to represent a piece of information or control that ¯ows

between the places and through the transitions are called
tokens. Tokens are depicted as black dots within the
places.

The PN model has been proven as a popular tool for
describing and analyzing systems that are characterized
as asynchronous, distributed, parallel, nondeterministic,
and/or stochastic (Murata, 1989). Typical application
areas are real-time systems, discrete event dynamic sys-
tems, ¯exible manufacturing control, robotics, avionics,
automotive systems, multiprocessor environments,
communication aznd synchronization protocols, dis-
tributed systems, interactive systems, expert systems and
logic programming, neural nets and fuzzy controllers.
The basic reasons for this wide popularity of PNs are
their ability to provide visualisation, which makes them
easily understood and learned by system designers, as
well as their sound analysis techniques. Other reasons
contributing to the popularity of PNs can be summa-
rized as follows.

1. PNs allow the representation of nondeterminism
and thus, a PN, like the system it models, is considered
as a sequence of discrete events, the order of occurrence
of which is one out of many possible ones allowed by the
basic structure. The asynchronous nature inherent in
PNs implies that there is no measure of time or of the
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¯ow of time. In real life, events require di�erent amounts
of time, and the PN model re¯ects this variability by not
depending on the notion of time to control the sequence
of events. Events which are independent of each other
are not projected on a linear time axis; instead a non-
interleaving partial-order relation of concurrency has
been introduced. Therefore, there is no explicit indica-
tion of the events' order because this order in time oc-
curs by chance.

2. PNs have the ability to model a system hierarchi-
cally: an entire net may be substituted by a single place
or transition, or places and transitions may be substi-
tuted by subnets. Consequently, designers can model a
system in di�erent levels of abstraction, without
changing the modeling formalism.

3. PNs provide explicit representation of causal sys-
tem dependencies and independencies, and support
representation of both the system and its properties by
using the same paradigm (Levi and Agrawala, 1990).

The major disadvantage of PNs is that they are
characterized of low manageability and legibility,
even for the description of systems of average com-
plexity. Constraints arise because PNs model only the
¯ow of control or data and cannot explicitly model the
¯ow of resources, parts and information. In summary,
the weaknesses of PNs are the following (Valavanis,
1990):
1. Only one place type is used to represent system states

or events, and thus actual system processes are insuf-
®ciently represented.

2. Only one token type is used to represent either a piece
of information or ¯ow of control. For this reason
there is no simultaneous representation of the ¯ow
of parts, resources, information and control through
the system.

3. Since there are no special inscriptions (such as predi-
cates and linear functions) associated with net places,
transitions, and/or arcs to constrain the ¯ow of to-
kens evolving through the net, large schemata are
usually needed to represent aspects, such as individu-
al system entities, complex precedence constraints
and conditions among system processes.
However, research in PN theory and software engi-

neering has introduced a number of new integrated ap-
proaches in order to reduce the size and, at the same
time, increase the modeling power of PNs, two objec-
tives that are very crucial in practical applications. More
speci®cally, a number of modi®cations and extensions to
the PN model, known as high-level PNs or PN-based
models, have been proposed. High-level PNs allow for a
formal treatment of individual (distinguishable) system
entities. In addition, they provide manageable and
concise system representation, as well as explicit mod-
eling of speci®c system conditions and actions.

It is not possible to address all high-level PN (HPN)
models in a single paper. Also, due to the rich body of

knowledge regarding the various timed versions 2 of
PNs, they have not been included in this study, which
aims at classifying and comparing several HPNs pro-
posed in the literature. Although a number of other
surveys on PNs have been proposed (interested readers
are referred for example to Peterson, 1981; Billington,
1988; Murata, 1989; Jensen, 1990; Lakos and Chris-
tensen, 1994), no one among them classi®es the various
presented models from an engineering perspective or
covers the practical characteristics of HPN approaches.
In this paper, HPNs are classi®ed into categories based
on the type of extension on the basic PN model that they
propose. The key issues of each category are presented
and the characteristics of representative models in each
category are critically discussed. The advantages and
limitations of representative models are graphically
demonstrated (due to space limitations, we do not in-
clude all discussed models in the graphical presentation).
Comparison is based on classical synchronization ex-
amples which are presented in an increasing order of
complexity, in order to indicate that all models are not
suitable enough to equally represent complex situations.
In particular, the producers±consumers and the readers±
writers synchronization problems will serve as the basis
for the comparative study. Figs. 1±3 and 5, have been
reproduced from Reisig (1992), Fig. 4 from Murata
(1989), Figs. 6±8 from Christensen and Hansen (1994),
Figs. 9 and 10 from Jensen (1995), Figs. 11 and 12 from
Genrich and Lautenbach (1981), Figs. 13 and 14 from
Christensen and Hansen (1993), and Figs. 15±17 from
Kameas (1995), respectively.

The rest of the paper is organized as follows. In
Section 2, the fundamental PN concepts are presented.
In Section 3, low-level models are assessed and analysis
methods are critically discussed. In Section 4, a frame-
work is de®ned for classifying several extensions pre-
sented in the literature from an engineering point of
view. Advantages and disadvantages of high-level PNs
which belong to the same class are critically discussed.
In Section 5, representative models in each category are
compared based upon illustrative synchronization
``benchmark'' problems. The paper concludes with
comparing the presented classes according to a set of
general criteria.

2 The concept of time has been introduced in several extensions on

the PN model to model systems with strict timing constraints. Timed

versions of PNs have been applied especially to real-time systems

modeling and include Timed PNs (Ramchandani, 1974), Time PNs

(Berthomieu and Diaz, 1991), Temporal PNs (Sagoo and Holding,

1991) and Stochastic (generalized or not) PNs (Hatono et al., 1991;

Marsan et al., 1984). The introduction of time is mainly related to the

location of time delays (at places, transitions and/or arcs) and the type

of delays (®xed, intervals or stochastic).
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2. PNs: Basic concepts

There are many closely related formal de®nitions of
PNs (see for example Peterson, 1981; Reisig, 1985;
Murata, 1989). The following de®nition has been
adopted from Murata (1989) and closely follows to that
in Reisig (1985).

Let N be the set of natural numbers, including 0. The
most classical PN model, the place-transition net (PT-
net), is de®ned as a 5-tuple structure PN� (S, T, F, W,
m0), in which
1. S is a ®nite set of places;
2. T is a ®nite set of transitions;
3. S \ T �£ and S [ T 6�£ (the sets of places and

transitions are disjoint and nonempty);
4. F � �S � T � [ �T � S� is a set of arcs (the ¯ow rela-

tion);
5. W : F ! �N n f0g� is the weight function on the net

arcs and
6. m0: S ! N is the initial marking, giving the initial dis-

tribution of tokens to places.
Arcs are not allowed between the same type of nodes

(places or transitions); they de®ne pre- and post- con-
ditions for transitions and can be labelled with weights
which are nonnegative integers, while an arc weight
equal to one can be omitted. For the sake of simplicity
the value of the weight function W on a net arc áx, yñ,
where x is place or transition and y is a transition or
place, is denoted as W(x, y). The domain of the weight
function W is usually extended to (S ´ T) [ (T ´ S) by
setting W(x, y)� 0 i� hx; yi 62 F , and then W is de®ned as
a function from (S ´ T) [ (T ´ S) to N. For a place
s 2 S and a transition t 2 T , s is called an input place of t
i� hs; ti 2 F (there is an arc from s to t), and s is called an
output place of t i� ht; si 2 F (there is an arc from t to s).
The set of input (output) places of a transition t is
named the preset (postset) of t, and is denoted by �t(t�).
Input and output transitions of a place s (that is, its
preset (�s) and postset (s�)) are de®ned similarly. A
transition (place) without any input place (transition) is
called a source transition (place), whereas one without
any output place (transition) is called a sink transition
(place). 3

Any function m : S ® N, giving the distribution of
tokens over the places (drawn as black dots or integer
values), is called a net marking. A net marking m is
simply an assignment of a nonnegative integer to each

net place, and therefore, it is often convenient to be
denoted in a n-vector form Murata (1989), where n is the
total number of places in S and the sth component,
denoted by m(s), is the number of tokens in place s. The
notion of net marking is used to represent the dynamic
state of a system. A PN model becomes dynamic as
tokens that mark the net ``travel'' between places and
through transitions. This travelling takes place as a re-
sult of a ``transition ®ring'', which is the transformation
that changes a net marking.

A transition t of a PT-net N� (S, T, F, W, m0) is said
to be ®rable (enabled) at a given marking m i� there are
enough tokens on the input places (this is called the
weak transition rule)

8s: s 2 �t; m�s�P W �s; t�:
A ®rable transition t at a marking m may, but need

not ®re. If it does, it yields another marking m0 which is
obtained by removing W(s, t) tokens from each place in
�t and adding W(t, s) tokens to each place in t� (i.e., the
®ring of a transition removes tokens from its input
places and deposits tokens on its output places, as many
as the respective arc weights require)

8s: s 2 S; m0�s� � m�s� � W �t; s� ÿ W �s; t�:
Transition ®ring is voluntary, instantaneous and

complete: a transition that is ®rable does not ®re
obligatory, yet it may ®re only if it is enabled; ®ring
takes zero time; and if a transition ®res, the case of
partial ®ring in which some token is not removed or not
added, does not occur.

For all the above mentioned, it is assumed that each
place can accommodate an unlimited number of tokens.
Such a PT-net is called in®nite-capacity net. In case of
®nite-capacity nets, a capacity function K is de®ned
which speci®es the maximum number of tokens that
each place s can hold at any time, that is K : S ® N and
any net marking m satis®es 8s: s 2 S;m�s�6K�s�. In a
®nite-capacity net, for a transition t to be enabled, there
is an additional condition: after t ®res, the number of
tokens in each place s in t� cannot exceed its capacity
K(s) (this is called the strict transition rule)

8s: s 2 �t; m�s� � W �t; s� ÿ W �s; t�6K�s�:

3. Assessment of low-level models and analysis methods

The PT-net model, as described above, generalizes on
the simple Condition-Event net (CE-net), in which all
arcs' weights and places' capacities are equal to one
(Reisig, 1985). Fig. 1 shows a CE-net modeling a simple
instance of the producer-consumer problem (i.e., a sys-
tem with one producer and one consumer). The pro-
ducer/consumer problem in its general form involves a
set of producer processes that supplies messages to a set
of consumer processes. All processes share a common

3 Likewise, Peterson (1981) proposed transition input and output

functions which are mappings from transitions to bags (multi-sets) of

places (a multi-set is a generalization of a set that allows multiple

occurrences of an element) and correspond to preset and postset of a

transition in the adopted de®nition. In addition, a k-weighted arc, in

the adopted de®nition, can be alternatively interpreted as a set of k

parallel arcs, all having a weight equal to one, from a place to a

transition (or vice versa).
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data area (communication channel) into which messages
may be placed by the producers or removed by con-
sumers. In the CE-net representation of Fig. 1, transi-
tions and places are interpreted as events and (pre- or
post-) conditions, respectively. For example, event
``deliver'' may occur if certain preconditions have been
met: the producer is ready to deliver (``delivery enabled''
is true) and the communication channel is not occupied.
Event ``receive'' may occur if the consumer is enabled to
receive (``receipt enabled'' is true) and the channel is
occupied. Only one token can be stored in the channel
indicating its status (occupied or not). Obviously, design
becomes more complex as the number of producing/
consuming objects increases or additional producers
and/or consumers are involved in the communication.

The PT-net depicted in Fig. 2 appears more suitable
to represent a large number of producing/consuming
objects. The communication channel corresponds to a
single place with a capacity of 10, in order to accom-
modate up to 10 objects. The net represents one pro-
ducer and two individual consumers, all depicted in
three di�erent dotted frames for modeling convenience.
Instead of conditions and events, circles and boxes are
more general and stand for passive (places) and active
(transitions) entities respectively. If one is interested in
the representation of the total number of consumers
only without distinguishing among them, Fig. 3 appears
more compact: two consumers have been placed into a
single net component. However, the main limitation of
Figs. 2 and 3 is that they do not distinguish among in-

Fig. 2. A PT-net representing a system with one producer, two individual consumers and three objects in the channel.

Fig. 1. A CE-net modeling a system with one producer and one consumer.
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dividual producers, consumers and communicating ob-
jects. Thus, if one is interested to indicate the individual
producers, consumers and objects, a CE-net seems to be
a more suitable, but the derived schemata will be too
large and complex.

In addition, inhibitor arcs may be contained in a PT-
net (Agerwala, 1974; Peterson, 1981). Such an arc can
only be de®ned from a place to a transition. An inhibitor
arc from a place s to a transition t modi®es the ®ring rule

as follows: the transition t is disabled (not ®rable) at a
marking m if the place s has w or more tokens (i.e.,
m�s�P w), where w is the weight of the inhibitor arc,
that is w is equal to W(s,t). However, an inhibitor arc
does not change the marking of a place when the asso-
ciated transition ®res. For example, the PT-net of Fig. 4
models a producers±consumers system where the ®rst
consumer has a higher priority over the second. In
particular, the ®rst consumer is able to consume as long

Fig. 4. A PT-net with inhibitor arcs modeling a producers-consumers system with priorities.

Fig. 3. A compact representation of the PT-net of Fig. 2 without distinguishing the two individual consumers.
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as Channel A has tokens, while the second consumer
can consume only if Channel A is empty and Channel B
has tokens (this is why an inhibitor-arc connects
Channel A to the transition receive of the second con-
sumer). It has been shown that if a PT-net is used, such a
system cannot be modeled without inhibitor-arcs. In
general, the embodiment of inhibitor arcs adds the
ability of zero testing (i.e., testing for the absence of
tokens in a place) and increases the expression (com-
putational) power of PNs to the level of turing machines
(Peterson, 1981).

From this point onwards, the term PN, unless explic-
itly stated, will refer to the PT-net model. Several sub-
classes of PNs have been de®ned by introducing certain
structural restrictions on the general model (Best, 1987;
Murata, 1989). Verifying if a net belongs to a particular
subclass may be helpful because some properties speci®c
to each subclass can be used to facilitate the system
analysis. Therefore, if the main intention is analysis, then
the choice of a low-level PN may be proved very appli-
cable. However, in case of cumbersome realistic systems,
there is always the possibility that such a choice will lead
to complex nets. For this reason, several systematic
synthesis approaches, which construct nets using com-
ponents that belong to a speci®c and well-analyzed sub-
class, have been proposed in the literature (Valavanis,
1990; Koh and DiCesare, 1991). The main objective is to
minimize as much as possible the complexity of the
analysis process in the ®nal constructed nets.

More speci®cally, in a state machine (SM) each tran-
sition t has exactly one input place and exactly one output
place (i.e., |�t|� |t�|� 1 for all t 2 T). Any of the three
subnets in Fig. 2 (depicted in dotted frames) is an SM. A
situation where a place has two (or more) output tran-
sitions, it is referred to as a con¯ict, decision or choice,
depending on the application. Two transitions t1 and t2

are said to be in con¯ict if either one can ®re but not both,
and they are concurrent if both can ®re in any order
without con¯icts. In Fig. 2, for example, a case where the
place ``channel occupation'' accomodates only one token
(object) will be a con¯ict for the two ``receive'' transi-
tions. SMs allow the representation of con¯icts, but not
the synchronization of concurrent activities.

In a Marked Graph (MG) each place s has exactly
one input transition and exactly one output transition
(i.e., |�s|� |s�|� 1 for all s 2 S). For example, PNs de-
picted in Figs. 1±3 are all examples of MGs. MGs allow
representation of concurrency but they do not represent
decisions (con¯icts). Thus, they are suitable for model-
ing decision-free concurrent systems.

In a Free-Choice net (FC) every arc from a place is
either a unique outgoing or a unique incoming arc to a
transition (i.e., for all s 2 S; js�j6 1 or ��s�� � fsg�.

An Extended Free-Choice net (EFC) is a PN where

s1� \ s2� 6�£) s1� � s2� for all s1; s2 2 S:

Finally, an Asymmetric Choice net (AC) is a PN
where:

s1� \ s2� 6�£) s1� � s2� _ s2� � s1� for all s1; s2 2 S:

A case where both con¯ict and concurrency take
place is called confusion. FCs do not allow confusion
situations to appear. There are two types of confusion:
symmetric and asymmetric. The former is a straight
confusion situation, while the latter will lead to a con¯ict
when a speci®c sequence of ®rings occurs. Concluding,
SMs allow no synchronization of concurrent activities,
MGs permit no con¯icts, FCs disallow confusion and
ACs may represent asymmetric confusion but disallow
symmetric confusion.

Two types of system properties can be studied and
veri®ed via PNs: those which depend on the initial
marking, and those which are independent of the initial
marking (Murata, 1989). The former are referred to as
marking-dependent or behavioural properties (e.g.,
reachability, boundedness, liveness, reversibility, per-
sistency), whereas the latter are called marking-inde-
pendent or structural properties (e.g., structural liveness,
controllability, structural boundedness, consistency,
repetitivity, fairness).

As far as analysis is concerned, the simplest technique
for a PN model is simulation of its dynamic behaviour.
Although simulation may be useful in discovering some
(un)desirable system behaviour, it generally does not
help in formally proving (behavioural or structural)
system properties. Therefore, the following formal
methods have been developed for analyzing and verify-
ing both the static and the dynamic behaviour of PNs
and consequently the system speci®cation (Murata,
1989; Murata et al., 1989; Peterson, 1981; Koh and
DiCesare, 1991):
· coverability (or reachability) tree method,
· matrix-equation approach,
· identi®cation of the speci®c subclass at which a given

PN may be classi®ed,
· reduction and synthesis methods.

The ®rst method involves the enumeration of mark-
ings that are reachable from the initial marking m0 (a
particular marking is called reachable from the initial
one when it can be reached after a sequence of transition
®rings). This method results in a tree (called the cover-
ability tree) representation of all reachable net markings
(i.e., the reachability set) for the particular initial
marking m0. Nodes represent markings reachable from
the initial marking m0 (root) and directed arcs represent
transition ®rings, which transform one marking to an-
other. For a bounded PN (when, for all reachable
markings, the number of tokens in each place is not
greater than a ®nite number), the coverability tree is
called the reachability tree, since it represents all possi-
ble reachable markings [Murata, 1989]. In addition, the
corresponding graph-like representation of a coverabil-
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ity (reachability) tree is called the coverability (reach-
ability) graph. Concluding, the method is an enumera-
tive technique leading to sequentialized views of the net
behaviour and its application is usually restricted to
small, bounded nets, since the resulted coverability tree
usually grows exponentially with the size and complexity
of the corresponding net (the state space explosion
problem).

As far as the matrix-equation approach is concerned,
every marking is represented as a vector, and conse-
quently, a PT-net can be interpreted as a set of linear
equations. The approach is suitable for analyzing struc-
tural net properties. The primary goal is the computation
of place and transition invariants. A place invariant is a
vector in which every place is associated to a weighted
count of tokens, that remains unchanged during net ex-
ecution; a transition invariant is a vector containing the
number of times that each transition ®res in a ®ring se-
quence which leads back to an initial marking. However,
it is often di�cult to compute the net invariants. In case
of large nets there are many invariants and it is hard to
®nd which of them are useful in analysis. Two are the
main reasons for this limitation: the non-deterministic
nature inherent in PNs and the constraint that the solu-
tions must be non-negative integers.

Veri®cation of system properties is often facilitated
by a directed graph analysis which is mainly concerned
with identi®cation of the speci®c subclass to which a
given PN can belong.

The major disadvantage of all the above methods is
that they have been proven impractical in analyzing
complex systems. Two approaches have been proposed
to cope with this problem: reduction and synthesis. The
former is concerned with reducing a large system model
to a simpler one, while the properties of the initial model
have to be preserved. The latter is concerned with con-
structing nets systematically in such a way that the de-
sired properties are guaranteed without the need of
analyzing the ®nal nets. Two kinds of synthesis have
been suggested: top-down and bottom-up. In a top-
down synthesis, transitions and places are re®ned into
more detailed nets. In a bottom-up synthesis, the ®nal
net is constructed by fusing common places or common
transitions or common paths between subnets. The main
problem with these approaches is that there exist no
general and complete algorithms applicable to all PN
classes. However, an interesting bottom-up synthesis
approach which is based on fusing along common paths
and minimizes the need to analyze the ®nal nets can be
found in Koh and DiCesare (1991).

4. High-level petri nets

The major restriction of the PN model described so
far is that large nets are usually needed to describe

systems of a medium complexity. Therefore, it is hard to
compute net invariants and the coverability tree usually
su�ers from state explosion. In the PN model there is no
formal treatment or clear identi®cation of individuals
(i.e., distinguishable system entities) and their properties
and relations. Explicit structuring mechanisms (e.g.,
composition operators) are not included in the formal-
ism, while conditions and operations are modeled only
by the enabling and ®ring rule. In addition, there is a
lack of a formal and general transformation procedure
to a programming language.

For all these reasons, more general approaches have
been proposed. These are known as high-level PNs
(HPNs) or PN-based models (Gerogiannis et al., 1995;
Jensen, 1995). Such models often provide more concise
and manageable system representation and can be used
to explicitly model data/control ¯ow, speci®c ®ring
conditions/actions, various system resources etc.

However, in case of systems with high complexity,
even HPNs are not adequate enough, since they still
describe a single view on the system under perspective.
This motivated the development of structuring mecha-
nisms and, in particular, the introduction of hierarchies
(hierarchical high-level PNs±HHPNs) (Huber et al.,
1990). HHPNs can be considered as a speci®c subclass
of HPNs which concentrates on the substitution of net
places and/or transitions by more detailed nets. HHPNs
surely facilitate systematic speci®cation, but analysis is
often performed on the ¯at executable detailed net (i.e.,
the state space explosion problem of the reachability set
still exists). For this purpose, structuring mechanisms
have been proposed which support also ``composition-
al'' analysis by de®ning equivalently behaving substi-
tutes of net places or transitions and thus, they
signi®cantly reduce the size of the state space (see for
example Valmari, 1993). These approaches usually ex-
ploit concepts from other speci®cation methods e.g.,
from the communicating sequential processes paradigm ±
CSP (Hoare, 1985). In the following, several extensions
of PNs proposed in the literature will be reviewed in
detail. The presentation will follow a classi®cation
scheme based on the type of extension that each HPN
proposes. This scheme consists of the following cate-
gories:
1. extensions based on individual tokens (pure HPNs),
2. high-level nets with modi®ed semantics,
3. extensions based on structuring mechanisms

(HHPNs),
4. extensions which support representation of uncertain

(fuzzy) information,
5. approaches based on integration with other speci®ca-

tion methods.
For each category, representative approaches will be

reviewed and their advantages and disadvantages will be
discussed. Speaking in advance, before choosing to ap-
ply a HPN model, an important trade-o� should be
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considered: the more powerful the model, the less
tractable computationally it becomes. Thus, if the main
purpose is analysis, then a low level model (like PT-net)
is most suitable, while, for large systems, the need for
reducing the system complexity leads to choosing a more
powerful HPN.

4.1. The extension of individual tokens

PT-nets and CE-nets seem impractical when the sys-
tem under modeling is composed of a number of iden-
tical components (i.e., system entities presenting the
same characteristics and behaviour). Distinguishing
among various identical system components can be
achieved only by constructing an identical subnet for
each of them and thus, the ®nal net su�ers from com-
plexity and redundancy. The employment of individual
tokens to model explicitly and only once all identical
system constituents was the key idea of the development
of several PN extensions. Typical examples are Predi-
cate/Transition nets (PrT-nets), Coloured PNs (CPNs)
and Individual Token Nets (ITNs). All these approaches
belong to a class which will be referred to as pure HPNs.

In PrT-nets (Genrich and Lautenbach, 1981) places
play the role of predicates and can accommodate sets
(tuples) of individuals (i.e., distinguishable system ob-
jects represented as tokens). In fact, tokens play the role
of a predicate extension. Inscriptions (logical formulas)
may be associated with some or all net transitions; arcs
may be labelled with formal sums of tuples of variables
which evaluate over tokens. The PrT-net model has
added a new direction to the descriptive power of PNs:
the formal (and more compact) treatment of all distin-
guishable system objects and their changing properties
and relations. As far as analysis is concerned, a gener-
alization of the linear algebraic technique (i.e., the ma-
trix-equation approach) used to compute the net
invariants has been proposed. The basic idea is to re-
place matrices of integers by matrices of formal sums
over tuples of variables (i.e., arcs' inscriptions). The
development of PrT-nets may be compared to the
transition from the propositional logic to the ®rst-order
predicate logic (Genrich and Lautenbach, 1981; Peterka
and Murata, 1989), and therefore, the model has been
proved exceptionally suitable in modeling and analysis
of logic programs.

CPNs extend PNs by associating colours with the
tokens, the places, or perhaps the transitions of a net
(Jensen, 1981, 1995). A colour is simply a type, a
method of distinguishing classes of elements that belong
to the same structural category. As long as the number
of colours is ®nite, a CPN can be transformed into a
complex PT-net (i.e., a PT-net can be considered as a
special case of a CPN, where all the set of colours have
only one element). On the contrary, an in®nite number
of colours gives CPNs the computational power of Tu-

ring machines, allowing any computable system to be
modeled. CPNs and PrT-nets are equivalent in compu-
tational power, in the sense that, any concept, algorithm
or theorem which applies to one model, applies to the
other as well. However, compared to the latter, the
former appear more convenient for systems description.
The di�erence between the two models is the underlying
formalism: CPNs are de®ned using types, variables,
expressions and functions in a way similar to procedural
programming languages (e.g., functions can be attached
to a CPN arcs), while the formalism of PrT-nets is based
on an algebraic notation (e.g., formal sums of tuples of
variables are attached to a PrT-net arcs). 4 Moreover, an
alternative linear algebraic method has been proposed
for CPNs (Jensen, 1981) which appears more transpar-
ent compared to the one applied to PrT-nets. This is
because in PrT-nets sums of tuples of variables are at-
tached to the net arcs, while in CPNs linear functions
between sets of (place and transition) colours can be
used for this purpose. Therefore, invariants of a PrT-net
may contain free variables, which have to be substituted
according to the speci®c ®ring sequence that leads to the
marking under consideration, while, in the case of
CPNs, matrices of integers are replaced by matrices of
linear functions over the sets of colours. The individual
variables, occurring as coe�cients in the invariants of
PrT-nets, are eliminated, and consequently there is no
need for additional substitutions.

The development of ITNs was based on the distin-
guishable tokens extension that in¯uenced the intro-
duction of both CPNs and PrT-nets (Reisig,
1985, 1992). The model formalism appears similar to the
one of CPNs. Moreover, in ITNs transition enabling
and ®ring rules have been slightly modi®ed: additional
explicit conditions and operations may be associated
with each transition which in¯uence the enabling and
the ®ring rule of the transition, respectively. For this
reason, ITNs may be also classi®ed into the category of
HPNs with modi®ed semantics discussed in the next
subsection.

4.2. HPNs with modi®ed semantics

A number of approaches have been presented for
extending either high-level nets (e.g., PrT-nets or CPNs)
or low-level models (e.g., PT-nets) with arcs, places and
transitions that have modi®ed semantics. The many
reasons why HPNs with modi®ed semantics may be
preferable are as follows:
· they provide a higher degree of encapsulation, since

details can now be hidden in the net components
(e.g., in arc and token types) and thus, they often re-

4 This is why PrT-nets have motivated the introduction of algebraic

HPN extensions which will be reviewed in a subsequent paragraph.
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sult in more comprehensible schemata (that is, nets
which do not have so much information hidden in
net inscriptions);

· they can relate semantics of a speci®c programming
language to terms of the PN formalism in order to fa-
cilitate the transition from design to implementation.
Although in this case we lose power in abstraction,
when someone is interested, for example, in automat-
ed code generation and rapid prototyping language-
dependent semantics in a PN formalism may be very
helpful (for example, interested readers can ®nd in
Hartung (1988) an approach combining HPNs with
Concurrent Pascal);

· they support true concurrency (multiple transitions
are concurrently enabled and occur together), as well
as interleaving semantics (by considering the e�ect of
each transition ®ring in isolation);

· they extend the descriptive power of the PN model in
order to cover speci®c application areas.
It should be mentioned that modi®ed semantics in-

crease only the compactness and not the computational
power of HPNs. A HPN with modi®ed semantics can be
converted to an equivalent HPN, but the result will be
an unnecessarily complex net. Furthermore, the major
limitation of most approaches is that they still lack di-
rectly applicable analysis techniques, and thus analysis is
usually performed on the equivalent HPN.

A number of approaches have been de®ned for ex-
tending and modifying operational semantics of HPNs
(place capacities and arc types, transition semantics and
place types). As far as the extension on place capacities
and arc types for HPNs is concerned, the most general
model, which encompasses the semantics of various
similar approaches, seems to be the one proposed by
Lakos and Christensen (1994). Their approach was
based on an earlier work by Christensen and Hansen
(1993). Both proposals incorporate the concepts of place
capacities, test arcs and inhibitor arcs into the CPN
formalism. For each ®nite capacity place, a triple con-
sisting of a capacity colour set, a capacity projection
function and a capacity multi-set is speci®ed. A capacity
projection maps markings of a ®nite capacity place onto
multi-sets, over the capacity colour set. This linear
function is used to disregard some information con-
cerning the marking of a ®nite capacity place. For ex-
ample, a projection function can be used to associate a
place only with some colours or colour combinations. A
capacity multi-set is a multi-set over the capacity colour
set used to bound the possible acceptable markings of a
®nite capacity place. In this way, the number of ap-
pearances of each colour are now limited.

Test arcs and inhibitor arcs are interesting extensions
regarding the arc types of a CPN. Test arcs access the
tokens in a place, but do not modify the marking of the
place and they are used to model concurrent access (i.e.,
concurrent read) to shared data without changing these

data. Inhibitor arcs are a generalization of the inhibitor
arc concept found in PT-nets. An inhibitor arc expres-
sion is associated with each inhibitor arc. The binding of
this expression (substitution of its variables) results in a
threshold value. Thus, a transition is disabled if the as-
sociated threshold value is exceeded; otherwise, the
transition may ®re without changing the marking of the
place connected to the inhibitor arc. Christensen and
Hansen (1993) propose that inhibitor arcs must be re-
stricted to be adjacent only at ®nite capacity places. A
capacity place is then transformed into a place together
with a complementary place which holds the capacity
multi-set less the marking of the original place. Lakos
and Christensen eliminate this restriction at all: inhibi-
tors arcs do not need to be adjacent at ®nite capacity
places due to the construction of a generalized comple-
mentary place (for more detailed information about this
concept see Lakos and Christensen (1994)). Further-
more, they propose a wider set of arc types including
simple arcs, compound arcs and arcs with projected
inscriptions. Simple arcs form a fundamental set and are
combined to give more complex (compound) arcs. Arcs
with projected inscriptions allow arc inscriptions to be
modi®ed by a linear projection function. Finally, a ®nite
capacity place in the model of Christensen and Hansen
can be equivalently modeled using the Lakos and
Christensen's approach as a place where every input arc
is coupled with an inhibitor arc, with the capacity as arc
inscription.

To summarize, both approaches are applied directly
to HPNs (CPNs) and not to simple models; both can
represent true concurrency (i.e., multiple transitions
occur together) and interleaving semantics (i.e., multiple
transitions can occur in any order) as well. However,
Lakos and Christensen's work is more general since it
eliminates the need to de®ne inhibitor arcs incident at
®nite capacity places and proposes explicitly a wider set
of arc types. Furthermore, they have proven that their
model incorporates a number of other arc extensions
presented in the literature (Billington, 1988; Heuser and
Richter, 1992). For example, their formalism can be
used to model place summary functions, a concept de-
rived from the Object-Oriented language LOOPN and
originally presented in Lakos and Keen (1991). A place
summary function is used to determine if all tokens in a
place have a given colour or a colour from a range of
possible colours, as well as to ®nd the number of tokens
in a place which satisfy a given condition. In Lakos and
Christensen's model a place summary function is
equivalent to an ``equal'' arc with a projected inscrip-
tion.

An alternative model for extending arc semantics is
the one presented by Ciardo (1994). This approach
overcomes the limitation of PT-nets in describing prac-
tical situations where transition ®rings remove (add)
from (to) a place a number of tokens which depends on
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the net marking. The proposed class of models extends
PT-nets (and not HPNs) with marking-dependent arc
weights (cardinalities). The following subclasses of PT-
nets with marking-dependent arc cardinalities are de-
®ned:
· Ordinary PT-nets: arcs have constant cardinalities,
· Reset PT-nets: arcs empty the tokens from a place,
· Post self-modifying PT-nets (set nets): the cardinality

of output arcs can be any nonhomogeneous linear
combination of the marking (e.g., a duplication of
the number tokens in a place),

· Transfer PT-nets: the ®ring of a transition can move
(but not duplicate) all the tokens from one place to
another,

· Linear transfer PT-nets (reset-set nets): both reset and
duplication of tokens are allowed,

· Self modifying PT-nets: the cardinality of both input
and output arcs can be any nonhomogeneous linear
combination of the marking.
The class of PT-nets with marking-dependent arc

cardinalities includes PT-nets with inhibitor arcs as a
subclass, since an inhibitor arc is equivalent to an arc
with cardinality 2m(s), where m(s) is the marking of a
place s. In contrast to Lakos and Christensen's approach
(Lakos and Christensen, 1994), marking-dependent arcs
extend low-level models (PT-nets) and not HPNs. In
addition to that, arcs with marking-dependent behaviour
appear more restricted compared to the several arcs types
proposed by Lakos and Christensen. However, Ciardo's
proposal is combined with a ``direct'' analysis method
based on a generalization of PT-net invariants.

Another interesting modi®cation on the operational
semantics of a PT-net arcs is the debit arc extension
(Stotts and Godfrey, 1992). PT-nets with debit arcs
(debit nets) are used to specify events that may proceed
even when all ®ring preconditions are not met. A debit
arc is permitted only from a place s to a transition t. In
that case, if s is not marked then t may ®re and a debt
(also called an antitoken) will be created in s. On the
contrary, if s is marked then ®ring t may either consume
a token or create a debt. Debit nets semantically extend
the ®ring rule of PT-nets by de®ning special annihilation
policies for tokens: a token and an antitoken residing in
the same place can annihilate (destroy) each other. Two
annihilation policies have been de®ned, namely instan-
taneous and delayed annihilation. The former speci®es
that whenever a token and an antitoken are co-resident
in a place then they immediately annihilate each other,
while the latter de®nes that annihilation will take place
in subsequent states of net execution. The class of debit
nets under the delayed annihilation has been proven to
be equivalent to the class of PT-nets, while debit nets
under the instantaneous annihilation are equivalent to
Turing machines, since they have been proved to be a
superset of the class of PT-nets with inhibitor arcs
(Stotts and Godfrey, 1992).

Numerical PNs (NPNs) (Billington et al., 1988)
compose a comprehensible realization of HPNs which
can be directly executed and analyzed. NPNs include
Predicate/Transitions nets (PrT-nets) as a subclass since
they generalize tokens to tuples of variables, like PrT-
nets do. In addition, the model presents the following
extensions:
1. A set of data variables is associated with the net (a

data variable is represented by a place, with appropri-
ate input and output arcs, and a token carrying its
present value). Common supported variable types
are integer, modulo, Boolean, enumerated and string.

2. Two place capacities are supported. The ®rst (K) sets
a bound on the number of tokens of a particular val-
ue that can be resident in a place, the second (K*) sets
a bound on the total number of tokens allowed in a
place.

3. Three inscriptions are associated with each arc: (a) an
input inscription, de®ning the condition which may
be satis®ed by a collection of tokens in the associated
input place, (b) the destroyed token inscription, de®n-
ing a multi-set of tokens, which is removed from the
associated input place, when the transition ®res, and
(c) the created tokens inscription, specifying the mul-
ti-set of tokens which is added to the associated out-
put place, when the transition ®res.

4. Two optional inscriptions are associated with each
transition: (a) a transition condition, de®ning a con-
dition on net data variables associated with tokens re-
siding in the transition input places, and (b) a
transition operation, de®ning an operation on the da-
ta variables.
The formalism of NPNs presents many similarities

with other approaches. For example, Billington (1988)
introduced three capacity concepts for CPNs: the total
(or integer) capacity, the multi-set capacity and the ca-
pacity with unbounded colours. Total capacity and
multi-set capacity are identical to K* and K place ca-
pacities de®ned in NPN formalism, respectively. On the
other hand, the multi-set capacity with unbounded col-
ours, in Billington's proposal, allows a multi-set over the
set of colours in a place to contain in®nite elements.
However, these concepts have been further generalized
by Christensen and Hansen (1993) and Lakos and
Christensen (1994). Furthermore, the modi®ed transi-
tion semantics in a NPN (the two optional conditions
which can be associated with each transition) are also
found in the ITN formalism. Concluding, NPNs incor-
porate essential features found also in other models. The
main motivation for the approach was to de®ne simple
extensions which allow for an easier and more powerful
speci®cation, while ``direct'' veri®cation of net proper-
ties (by constructing the reachability graph) is possible.

The same idea has in¯uenced the development of
other realizations of HPNs, such as PNs with transition
enabling functions (Pne), which modify only the transi-
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tion semantics of PT-nets (Papelis and Casavant, 1992).
In a manner similar to PrT-nets, Pne allow the associa-
tion of a predicate with each transition. However, in
PrT-nets several conditions (i.e., arc inscriptions) can be
associated with a place, which results in nets that may
not visually correspond to the original modeled system.
Therefore, PNe try to specify the system structure with
the use of PT-nets and the ``control strategy'' of the
system textually using transition enabling functions,
which are produced from a speci®c BNF grammar.

Finally, Extended PNs (EPNs) (Valavanis, 1990)
represent a typical attempt to extend the place semantics
of PT-nets. The formalism of EPNs incorporates six
di�erent types of places to account for the di�erent
classes of conditions that may arise in the modeled
system. In particular, EPNs are suitable for the explicit
modeling of the ¯ow of control, resources, parts and
information through a typical ¯exible manufacturing
system. As far as analysis is concerned, a hierarchical
methodology has been suggested for synthesizing EPNs
and thus, the approach could also be classi®ed at the
category discussed in the next subsection. The method-
ology uses MGs for constructing the ®nal EPN model of
the system. The properties of the ®nal net components
(MGs) are preserved, in order to ensure that the ®nal
model will be error-free, live and consistent. Further-
more, in MGs all tokens at a place are expected to move
simultaneously and therefore, the composite EPN model
will not su�er from stagnation of tokens. This limitation
is often associated with pure HPNs, since some tokens
are stagnated at a place, as the succeeding transition is
unable to ®re.

4.3. The extension of structuring mechanisms (hierarchi-
cal high-level PNs±HHPNs)

HPNs represent a single and ¯at view of the modeled
system, since their formalism does not support any
structuring (hierarchy) mechanism. The requirements
for visualizing selected parts of a system at varying levels
of abstraction, thus facilitating an incremental design
process, and allowing for reusability of net components,
have motivated the introduction of the class of hierar-
chical high-level PNs (HHPNs). It should also be em-
phasized that the embodiment of a structuring
mechanism does not extend the computational power of
HPNs, but facilitates well-structured re®nement and
abstraction operations, allows reusability and bottom-
up or top-down design, supports encapsulation (detailed
information can be hidden in a well structured manner),
and ®nally provides a clear separation of all system
components.

In general, a HHPN allows net components to be
connected (and thus to communicate with each other)
by merging of transitions, places or arcs. Composition
by merging transitions preserves the net properties and

consequently facilitates the analysis process. The main
limitation of this approach is that it leads to tightly
coupled net components, since each component net does
not clearly correspond to an autonomous subsystem; the
set of all possible transition ®ring sequences of a net
component represents both the internal behaviour and
the interaction with the other net components. Com-
position by merging places allows for communication
between subnets by resource sharing. This approach
conforms directly to the natural perspective of PN the-
ory (that is, transitions are active entities which com-
municate via passive entities called places), but leads to
additional complexity, because correct synchronization
must be ensured. In addition, strong coupling possibility
between net constituents still exists. Finally, composi-
tion by merging arcs supports the loosest coupling be-
tween net components. Following this technique,
communication between subnets is realized by sending
and receiving messages. A representative example of
connecting nets by arcs is the Cooperative Nets model
(Sibertin-Blank, 1993, 1994) (the reader is referred to
the subsection about the object-oriented extensions of
HPNs).

A typical example of HHPNs is the hierarchical CPN
(HCPN) (Jensen, 1990, 1995; Huber et al., 1990). A
HCPN consists of a number of hierarchically interre-
lated subnets, called pages, which represent a substitu-
tion of transitions. A hierarchical transition can be
replaced by a page in order to give a more detailed de-
scription of its internal transition ®ring sequence. Thus,
a model is described as a set of related subnets (drawn
on separate pages).

In a HCPN, the hierarchy mechanism is mainly used
for speci®cation purposes. Composition operators are
applied directly to the static net structure and the
analysis of the system dynamic behaviour and properties
can be performed only on the completely re®ned exe-
cutable net. As a consequence, the complexity of ®nding
the reachability set (i.e., all possible reachable markings)
grows signi®cantly. This is the main reason that alter-
native models have been de®ned, which deal with this
problem by including structuring mechanisms and sup-
porting not only well-de®ned substitution of places and
transitions, but also analysis techniques. For example,
Valmari (1993) presented a synchronous composition of
PNs based on the equivalence notion and composition
operators that originate from the theory of CSP (Hoare,
1985). The reachability set of the composed net is gen-
erated by composing equivalent reachability sets of the
component subnets, while behavioural preserving re-
ductions are performed between re®nement steps. Three
composition operators have been de®ned, namely the
parallel composition, the hiding and the renaming oper-
ator. These operators are applied directly not to a HPN
but to a labelled (inscribed) PT-net model, in which la-
bels (inscriptions) from a ®nite alphabet are associated
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with net transitions. The ®rst operator de®nes synchro-
nous communication. Subnets communicate with each
other by executing transitions with a common label.
Communication takes place only if every subnet is ready
to communicate and a�ects all the communicating
subnets. The hiding operator is used to hide some in-
ternal events (the labels of the corresponding transitions
become invisible), and thus to maintain a black-box
view of system semantics. Finally, the renaming opera-
tor replaces some transition labels by new labels in order
to be reused in di�erent contexts. To summarize, this
approach relates semantics of the process algebra theory
(CSP) to the PN theory, and thus it can be also classi®ed
into the category of integrated approaches based on
process algebras. However, the possibility of the reach-
ability set state explosion in each isolated subnet still
exists and therefore the approach is rather limited to
subnets with small reachability sets.

More recently Bucholz (1994) presented an alterna-
tive methodology for compositional reachability sets
generation, where the hierarchy mechanism de®nes an
asynchronous interaction between subnets. The pro-
posed HHPN is a generalization of hierarchical CPNs
and results in a tree structure, where each node is a
HCPN. For each node two kinds of views are de®ned: a
detailed view describing the local behaviour and an ag-
gregated view on the nodes above and the nodes below.
Consistency between the detailed and aggregated view
has to be assured. This can be achieved by checking the
behaviour of detailed against the aggregated views. In
comparison to other HHPNs, Bucholz's model appears
more complicated from a practical point of view.
However each subnet is executable and analyzable,
while unrestricted re®nements are allowed. In contrast
to the Valmari's approach, the asynchronous interaction
between a subnet and its environment is speci®ed using
input and output ports (so called place and transition
borders), while the synchronous communication is
modeled in the parent net (subnet environment), which
is responsible for synchronizing the communication.
The whole reachability set can be composed of much
smaller parts because reductions performed on lower-
level subnets reduce the reachability sets of higher-level
ones. However, Valmari (1994) proposed a model for
representing asynchronous and not only synchronous
communication. In this approach communication takes
place via places (instead of using transitions), an idea
which is more natural to the original PN theory point of
view.

Another model which could also be classi®ed into the
category of HHPNs is interactive multi ¯ow graph
(IMFG), a HHPN which has been introduced for de-
signing interactive applications (Kameas et al., 1994;
Kameas, 1995). An interactive application is considered
as a set of communicating IMFGs. An IMFG is com-
posed of active components, called actors, and passive

components, called links; tokens are used to represent
¯ow of di�erent kinds of information. Actors are of four
types: context actors, which represent integral user goals
and are hierarchically decomposed into simpler goals,
action actors, which represent application functions that
must be eventually executed, library actors, which rep-
resent the goal decomposition schemata, and group ac-
tors, which are used to represent the PN re®nement
property. Links are of four types: event, which accom-
modate the user- or system-generated events that trigger
actor ®ring, context, which accommodate the goal-
achieving strategy that users employ, data, which ac-
commodate the data that ¯ow in the application, and
condition, which are used to accommodate the status of
the application and the control ¯ow. Di�erent kinds of
usage are permitted on tokens: normal, OK, debit and
read-only.

The model supports the separation of user interface
operations from application functions, and the reus-
ability of integral dialogue parts, while it provides de-
signers with the ability to evaluate multiple application
perspectives. State is represented by using a list of ready-
to-®re actors. State transition is modeled with an actor
®ring policy that adds or removes actors from the list
based on their ®ring rules. The latter are functions over
actor input and output links. IMFG is based on HPNs
(mainly CPNs) to which it adds structure and semantics.
Furthermore, IMFG adds memory to PN formalism in
the form of actor-ready list and distinguishes tokens at
semantics level. The model supports structured interac-
tion by providing two goal decomposition policies:
AND decomposition and OR decomposition. Re®ne-
ment of context actors is context-based and event-driv-
en, and represents the hierarchical re®nement of user
goals into the strategy that must be employed in order to
achieve them. However, in order to formally analyze the
application under design, an IMFG must be trans-
formed into a basic PN by removing most semantical
and phenomenological aspects. Then the model becomes
more general and suitable for modeling systems that lie
on the event-action paradigm (e.g., discrete event dy-
namic systems).

4.4. Extensions supporting the representation of uncertain
(fuzzy) information

Fuzzy PNs (FPNs) is an application speci®c PN-
based approach developed to represent uncertain oper-
ations and approximate conditions in areas such as ro-
botics, ¯exible manufacturing systems and fuzzy
controllers. Because of this limited application range,
FPNs will not be contrasted with the other categories.
However, in this subsection a comparative assessment of
the various proposed FPNs will be given.

The model was introduced by Looney (1988) for the
speci®cation of rule-based reasoning using propositional
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logic. Places are interpreted as conditions having fuzzy
truth values (tokens), while transitions represent the
fuzzy decision values of rules. Reasoning in a FPN can
be performed by iteratively maxing (generalized OR)
and mining (generalized AND) transitions and fuzzy
truth values of tokens, respectively.

In Garg et al. (1991) a variation of FPNs was pro-
posed in which negative arcs represent negation of a
proposition (place), while input and output places of a
transition are conjuncted and disjuncted, respectively. In
addition, the proposal includes an algorithm to deter-
mine possible inconsistencies in a fuzzy knowledge base,
which is based on a set of reduction rules. The algorithm
initially substitutes each negative arc with an equivalent
inverted normal (positive) arc and subsequently per-
forms speci®c net reductions. Finally, the appearance of
a ``Null Transition'' (with a truth value greater than 0.5)
will indicate whether the fuzzy knowledge base is in-
consistent. As far as theorem proving is concerned, the
refutation approach is followed: the negation of the
theorem to be proved with truth value 1.0 is added to
the given set of fuzzy rules; the new set of rules is
checked for inconsistencies and if it is inconsistent, then
the given theorem is true.

The above approaches are useful in rule-based Expert
Systems modeling in order to help in automating the
decision making process. However, their basic limitation
is that they use real numbers in [0, 1] (crisp values) to
describe the truth values of conditions and rules. In
order to overcome this limitation, Cao and Sanderson
(1993) introduced a generalized de®nition of FPNs
which uses not only crisp values but also fuzzy sets.
More speci®cally, they proposed the following types of
fuzzy variables:
· a local fuzzy variable associated with a place, denot-

ing uncertainty of the local variable which is attached
to the given place (i.e., such a variable represents in-
formation which locally a�ects an operation),

· a fuzzy marking variable associated with a place, de-
noting uncertainty that a token exists in the place
(i.e., such a variable represents information regarding
the system state),

· a global fuzzy variable associated with a token, repre-
senting a characteristic of a global operation of the
modeled system (i.e., such a variable is used to repre-
sent the uncertainty in planning a sequence of fuzzy
operations).
Three di�erent possibilities have been de®ned for the

enabling and ®ring rules in a FPN: a transition ®ring is
performed in the same way with simple CE-nets and
local fuzzy variables remain unchanged, the ®ring fol-
lows that of CE-nets and local fuzzy variables are
changed, or the ®ring depends on the input variables
and local fuzzy variables are changed.

In contrast to low-level PNs or HPNs, the model of
Cao and Sanderson represents fuzzy information and

reasoning. Therefore, the enabling condition for a
transition depends on the local fuzzy variables or the
global marking of the net. The e�ects of a transition
®ring depend both on the marking of its input places
and on a reasoning mechanism inherent in the transi-
tion. Therefore, tokens in a place do not have to dis-
appear. Although this approach seems to be the most
general one in the class of FPNs, it does not yet take into
account any interrelations among the di�erent fuzzy
variables, which is a topic for further research.

4.5. Integration with other speci®cation methods

Approaches based on integration with other speci®-
cation methods can be further classi®ed into four sub-
categories as follows:
· extensions based on systems of communicating ®nite

state machines,
· extensions based on process algebras,
· extensions based on abstract data types,
· extensions based on the object-oriented approach.

4.5.1. Extensions based on systems of communicating
®nite state machines

Systems of CFSMs (Finkel and Rosier, 1988) include
inherent mechanisms for handling queues and therefore
have been used to model distributed and/or parallel
systems, where processes communicate by sending
messages via ®rst in ®rst out (®fo) channels. Systems of
CSFMs pose strict constraints on design, since they
adopt the ®fo channel as a built-in communication
mechanism. First In First Out Nets (FIFO nets) (Finkel
and Choquet, 1988; Finkel and Rosier, 1988) have been
proposed as a generalization of both PNs and systems
CSFMs. Places and tokens in a FIFO net represent ®fo
queues and letters, respectively. Transitions enqueue (or
dequeue) words (i.e., sequences of letters) to (or from) a
®fo queue. PT-nets, can be considered as FIFO nets the
®fo alphabets of which have a size of one.

Although this generalization has been proven to in-
crease the expressive power of PNs to the level of Turing
machines, FIFO nets have so far gained only limited
acceptance. This is because they assume a speci®c
communication mechanism among processes (i.e., the
®fo place). Perhaps the most important research direc-
tion in modeling with FIFO nets is to de®ne subclasses
where the various analysis problems (i.e., liveness,
boundedness, reachability etc.) are decidable. These
subclasses maintain the ®fo nature of the communica-
tion mechanism, but restrict the acceptable sequence of
messages that can pass through a ®fo queue.

4.5.2. Extensions based on process algebras
Both PNs and process algebras (e.g., CCS (Milner,

1989) and CSP (Hoare, 1985)) deal with the speci®cation
and analysis of parallel and distributed systems. The
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former focus on the graphical representation of a sys-
tem, while the latter place emphasis on modular system
design by using compositional operators. Research on
exploiting the advantages of both formalisms leads to
PN realizations which incorporate features met in pro-
cess algebras. In particular, compositional operators
developed for process algebras can be applied almost
directly to PN transitions. It should be mentioned that
such an application facilitates modular design, but does
not conform entirely to the original idea of PN theory,
which assumes that active components (transitions)
communicate through passive components (places).

For example, CPNs have been extended with col-
oured communication channels (Christensen and Han-
sen, 1994). The concept of channels has been in¯uenced
by CSP and provides simpli®ed representation for syn-
chronous communication. Synchronized communica-
tion in CSP is achieved by ! and ? operators (Hoare,
1985). Let us consider for example a channel c, a mes-
sage m and a data variable r. The notation c!m in CSP
means ``send the message m over the channel c'', while
c?r means ``receive a message over the channel c and
assign the message to r''. Similarly, in CPNs extended
with channels, a communication between two transi-
tions is possible only if the one is a !?-transition and the
other is a ?!-transition. The direction of the communi-
cation is not speci®ed and thus the approach uses !? and
?! operators instead of ! and ? operators met in classical
CSP. Although CPNs extended with channels are
equivalent in behaviour with (and can be transformed)
to CPNs, they decrease the number of the transitions
and arcs required. In addition, communicating via
channels in a CPN di�ers slightly from merging transi-
tions, in two major points: ®rst, in transition merging,
all transitions share a common binding, while the
bindings of transitions used in a channel are indepen-
dent (besides the conditions speci®ed in the communi-
cation expressions); second, transitions that
communicate by using a speci®c channel may ®re
without involving any other transitions using the same
channel. Therefore, a channel communication can be
equivalently modeled by associating a transition fusion
set (i.e., by further decomposing a transition) with each
possible way of the communication. As far as analysis is
concerned, place invariants have been de®ned for CPNs
extended with channels.

Concluding, the approach is mainly in¯uenced by the
same motivations that led to the development of
HHPNs (i.e., hierarchical representation and reusabili-
ty). In comparison to the proposal of Valmari (1993)
described before, both have originated from CSP to
model synchronous communication via transitions.
Moreover, both extend analysis methods of HPNs:
CPNs with channels extend the concept of place in-
variants, while the approach of Valmari uses the
reachability graph. However, the Valmari's approach

seems less intelligible since it incorporates operators
applicable to a labelled PT-net model rather than to a
HPN.

Other interesting research directions in combining
process algebras and PN theory are oriented towards the
development of net semantics for process algebras and
the representation of PNs in terms of CCS or CSP for-
malism. Such orientations are outside the scope of this
paper since their main objective involves proving the
correctness of speci®cations expressed in process algebra
terms. Interested readers can ®nd in Degano et al. (1988)
an approach de®ning a CE-net from a CSP process and
in Dietz and Schreiber (1994) an attempt to translate an
arbitrary PT-net into terms of the CCS formalism.

4.5.3. Extensions based on abstract data types
PNs and Abstract data types (ADTs) (Ventouris and

Pintelas, 1992) o�er complementary aspects of a system
speci®cation. PNs emphasize the speci®cation of parallel
and communicating activities using a graphical nota-
tion, but they are weak in dealing with data types and
formally de®ned modularity. Although the various
proposed HPNs support process abstraction, they often
have a limited ability in supporting data abstraction. On
the contrary, the algebraic formalism of ADTs is suit-
able for the representation of system functional behav-
iour, but they are often weak in representing parallel
and synchronized activities. In addition, the most pop-
ular formalisms for data abstraction, such as the alge-
braic ones, are weak in supporting process abstraction, a
signi®cant need in concurrent systems modeling. The
integration of PN theory with the algebraic theory of
ADTs has led to nets having the data tokens of an ADT.

A typical example of a combination of both ap-
proaches are Predicate-Event Nets (PrE-nets) (Schmidt,
1991). PrE-nets form the basic part for a formal speci-
®cation and design language called SEGRAS (Kramer,
1989) which tries to unify algebraic speci®cations and
HPNs. The algebraic axiom part of the language is used
to describe and analyze the properties of the ADTs
comprising the system (i.e., the static data structures on
which a system operates), while the PN part (i.e., a PrE-
net) is used to specify the system initial state and the
accessibility of the other states from the initial one (i.e.,
the dynamic system behaviour). A PrE-net speci®es the
interaction mechanism between the system relevant
states and state-changing operations. The interaction
protocol provides an abstraction from all parallel system
activities. Therefore, PrE-nets are used to represent
parallelism among the operations on abstract objects.

The approach followed in SEGRAS language gives
readers who are unfamiliar with formal algebraic
methods the possibility to get a ``clear'' view of the
system behaviour. In comparison to other HPN models,
PrE-nets are a variation of PrT-nets, which allows al-
gebraic speci®cation of the data that is ¯owing in the
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net. PrE-nets inherit from the algebraic speci®cations
the clear separation between syntactic and semantic in-
formation. Such a model syntactically is a PN with in-
scriptions on an ADT signature, while semantically its
behaviour is modeled with the ¯ow of black tokens as in
simple CE-nets. Therefore, certain operations used in
algebraic speci®cations (e.g., extension, combination
and renaming) can be used to de®ne a modular com-
position of a large system model. The basic limitation of
the approach is that it is not fully integrated since the
algebraic and net parts of the SEGRAS language are, to
a certain degree, separated.

Another integrated model which uses algebraic terms
instead of set theory terms for specifying the individual
tokens ¯owing into the net is OBJSA net (Battiston et
al., 1988). A token consists of a name part, which rep-
resents token instances and is not modi®ed by transition
®ring, and a data part, which models the data structure
of a sequential component of the system to be modeled
and can be modi®ed by transition ®ring. Thus, individ-
ual tokens are instances of a parameterized object con-
sisting of name and data parts. Like PrT-nets, predicates
can be associated with each transition. These predicates
introduce constraints on the tokens enabling the tran-
sition, and de®ne functions, which show how transition
®rings modify the object data parts.

4.5.4. Extensions based on the object-oriented approach
It is well-known that in the object-oriented paradigm

(Booch, 1986), an object is actually an ADT which
communicates with other objects through methods by
using messages. The object-oriented approach mainly
extends the concept of data abstraction through inheri-
tance, that is higher level ADTs (objects) transfer some
of their functionality to those at lower levels.

A typical example of combining PNs with the object-
oriented approach is PROcess-Translatable PNs (PROT-
nets) (Baldassari and Bruno, 1988, 1991). Two are the
main characteristics that distinguish them from other
HPNs: ®rstly, they can be easily translated into actual
programs; secondly, they have an object-oriented struc-
ture. However, the formalism being used is similar to
other HPN models. Places stand for process states, to-
kens represent process instances and contain data, and
transitions describe synchronization among processes.
Actions as well as predicates that impose further condi-
tions on ®ring, besides the ®ring rules, are associated with
transitions. Each object is represented by an autonomous
net exchanging messages (tokens) with other objects.
Objects can be decomposed to form other objects in a
hierarchical way. In a similar way with SEGRAS lan-
guage, the control structure speci®ed by a PROT-net is
separated from the textual code which performs well-
de®ned sequential activities. Finally PROT-nets, like
IMFGs, can describe multiple perspectives of a system,
by extending state transitions and data-¯ow diagrams.

Petri Net Objects (PNO) (Bastide and Palanque,
1990) are used to design event-driven user interfaces.
Firstly, an interface is viewed as an object, the methods
of which can be interactively triggered by the user.
Secondly, the behaviour of each object (i.e., the spon-
taneous object activity, the e�ect on the availability of
object operations and the e�ect of operations on the
internal object state) can be described by a PNO. The
model seems more restricted compared to the IMFG
model, since PNO emphasize modeling of the user in-
terface operations and not of the user-application in-
teraction.

Up to this point, several HPNs have been discussed
which try to deal with the speci®cation of the interaction
among the net components (i.e., how net components
communicate each other and how they are structured to
form higher or lower components). Nevertheless, com-
position is often performed by merging places or tran-
sitions, an approach that results in strong coupling
among net components. Three integrated formalisms
which adopt features of the object-oriented paradigm
and achieve loose coupling are Communicative Nets,
Cooperative Nets and Cooperative Objects (Sibertin-
Blank, 1993, 1994). In these approaches the communi-
cation is realized by a message sending (i.e., an arc from
a transition to a place) and receiving (i.e., an arc from a
place to a transition) schema. The net components are
linked by arcs or, equivalently, by fused places. Objects
stand for entities which belong to object classes. An
object type (class) de®nes the structure of its objects. A
Communicative Object represents an instance of its
object type, whereas a Communicative Net is a common
structure containing all instances associated with an
object type. Therefore, the actual state of an object
corresponds to the marking of a Communicative Net of
its type. Communicative Objects interact by message
sending, while Communicative Nets include accept-
places, where tokens may be put by any net. However,
for synchronization purposes, no net may both put in
and take tokens from the accept-places. Finally, the
Cooperative Objects formalism supports design at
higher levels of abstraction. For this purpose, the for-
malism adopts the client-server protocol to construct
higher-level nets where clients and servers are dynami-
cally created and have communication dynamically set
up (Sibertin-Blank, 1993).

5. Comparative presentation

In Section 3, the producer-consumer synchronization
problem has been used as a basis for comparing low-
level PNs. In the current section, the same problem, in a
broader sense, is considered for the comparative study
of HPNs, from the communication point of view: rep-
resentative HPNs will be used to specify communication
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between producer and consumer processes which wish
to cooperate by sending and receiving messages through
a communication channel.

Since it is di�cult to examine the functionality of a
variety of HPNs based on the characteristics of a single
example (even if versions of the producers-consumers
problem are presented an increasing order of complex-
ity), comparison will continue by considering aspects of
another classical synchronization problem, the readers-
writers system. In that problem, reader processes access
shared data but do not alter it, while writer processes
change the values of shared information; any number of
readers should be allowed to proceed concurrently in the
absence of a writer, but only one writer may execute at a
time while readers are excluded.

Finally, in order to present the applicability of HPNs
in speci®c application areas, an example of using an
application oriented HHPN (IMFG) will be presented.
Although IMFG does not directly address a speci®c
synchronization paradigm, it has been selected in order
to show how a complex and asynchronous process, such
as a user-system interaction, can be modeled in a
structured way.

5.1. The producers-consumers problem

Individual token nets (ITNs): In the modeling example
of a producers-consumers system, a pure HPN, like an
ITN, can be appropriate to show who transacts with
whom (i.e., the individual producers-consumers and
objects can be explicitly modeled) and to provide sim-
plicity and compactness in the representation. Fig. 5
shows an ITN which is analogous to the CE-net of
Fig. 1 and models the producers-consumers system.
Now, producing/consuming objects are messages, tran-
sition deliver becomes send while transition receive re-
mains receive. The ITN models the distinguishable
producers and consumers as individual tokens (tokens p

and c respectively), takes into account the type of mes-
sages (according to the condition of transition send,
four-bit messages are transmitted) and uses variables (x,
y and z) to label the net arcs. For example, transition
send can ®re with x� p (producer p sends messages) and
an arbitrary four-bit message for y. A further extension
to Fig. 1 is that there is a place (storage) that stores all
the received messages. The formalism of ITNs appears
very similar to the one of CPNs. However, ITNs may
modify the transition ®ring rule by attaching explicitly
an operation (action) to a transition. This is the case of
the transition send which performs a speci®c action
when it ®res (a logical AND between message y and the
message string 0101).

Coloured petri nets (CPNs) and CPNs extended with
coloured communication channels: The net in Fig. 6
demonstrates how transitions in a CPN can communi-
cate synchronously through a coloured communication
channel. Transitions send and receive use a coloured
communication channel ch. The channel, as well as the
sending/receiving messages are of the same colour set
(type) called DATA. The communication is possible
because send is a !?-transition and receive is a ?!-transi-
tion and they both use the same channel ch. PROD and
CONS colour sets represent the producers and the
consumers respectively, while inscriptions (so called
communication expressions) attached to send and re-
ceive transitions specify the channel ch and the message
communicated through this.

Communication through channel ch is enabled if and
only the following conditions hold:
· there are su�cient tokens of the correct colours in the

input places with colour sets PRODxDATA and
CONS respectively (producer p is ready to send a
message x to consumer c),

· the communication expressions x!? ch and y?! ch yield
the same value when they are evaluated in the bind-
ings for which the two transitions ®re.

Fig. 5. An ITN modeling distinguishable processes which send and receive messages from each other.
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In the general case, communication between two
communicating transitions is bi-directional. In Fig. 6,
however, it should be noticed that x appears in the input
arc expression of send and y appears in the output arc
expression of receive. Therefore, the colour of the input
token of send speci®es the colour of the output token of
receive and communication takes place from send to
receive.

Fig. 7 shows the behaviourally equivalent CPN of the
net presented in Fig. 6. The communicating transitions
have been merged in a single transition called commu-
nicate with an inscription [x� y] denoting that com-
munication expressions must evaluate to the same value.
If one is interested in the representation of a multiple
producers-consumers system, each producer and con-
sumer will be represented with an individual subnet
(page in terms of Hierarchical CPNs±HCPNs) of Fig. 6.
For example, the net in Fig. 8 demonstrates two pro-
ducers and two consumers which communicate through
the same channel ch. An equivalent CPN would su�er
from complexity, since 4 (2 * 2) transitions and many

crossing arcs would be required to represent the com-
munication.

Hierarchical CPNs (HCPNs): A hierarchical HPN,
such as the HCPN model, will be used to describe a
more complex instance of the same problem. A sequence
of messages is sent from one site (Sender) to another site
(Receiver) via a Network, where messages can be delayed
or lost. In addition, Receiver sends acknowledgements
which Network transmits to the Sender. The ®rst and
more abstract page of the corresponding HCPN is de-
picted in Fig. 9, and consists of the Sender, the Network
and the Receiver part (declarations of colour sets, vari-
ables, constants and functions are omitted for the sake
of simplicity). A HCPN contains a number of inter-
connected subnets called (sub)pages, which result from
substituting transitions. Places surrounding a substitu-
tion transition are called socket places (e.g., places A, B,
C and D), while a each page contains a number of port
places; a socket place has a corresponding port place
with the same marking. Socket and port places can be
considered as composition operators which facilitate

Fig. 7. A CPN equivalent to the net of Fig. 6.

Fig. 6. A CPN extended with channels.
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systematic net synthesis: they provide modularity just
like the binding of actual to formal parameters that
takes place in a function call met in any procedural
programming language. Fig. 10 presents the corre-
sponding pages of the HCPN presented in Fig. 9.

The Sender page consists of:
two transitions, namely Send Message and Receive
Acknowledgement, which are responsible to send
messages (by creating a copy of the message into
place A) and receive acknowledgements, respectively,

Fig. 9. The ®rst page of a HCPN modeling network communication.

Fig. 8. A CPN extended with channels modeling two producers and two consumers.
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the place Send which stores the messages to be sent
(each token in this place contains the message num-
ber and the data contents of the message);
the place Next Send which stores the number of the
next message to be sent (at the initial marking this
number is equal to 1 and it is increased each time
an acknowledgement is received).

Firing of Send Message neither removes the message
from Send (because of the bi-directional arc) 5 nor in-
creases the message number at Next Send, in order to
consider the case that a message is lost and need to be
resent. The same message is transmitted until there is an
acknowledgement that speci®es that this message has
been successfully received.

The Receiver page contains:
· the transition Receive Message, responsible to both

receive messages and send acknowledgements;
· the place Received, which stores the content of the re-

ceived message (a single token that represents a the
concatenation of the text strings contained in the re-
ceived messages ± any duplicates and messages re-
ceived out of order are ignored). At the initial
marking this text string is empty (``_''), while at the
®nal marking, the string ``Categorization and Com-
parative Study of High-Level Petri Nets'' is expected;

· the place NextRec containing the number of the next
message to be received. At the initial marking this
number is equal to 1 and it is increased each time a
message is successfully received. Receive Message
whenever receives a message, checks if the message
number n is equal to the number k in NextRec. If this

is the case, the number in NextRec is increased by 1
and the message text string is concatenated with the
current text string in Received (unless it is equal to
``#########'' denoting the end of the message se-
quence). Otherwise, the message is ignored and the
number in NextRec remains the same. In both cases
an acknowledgement is sent with the number of the
next message which should be transmitted.
The Network page consists of two transitions, namely

Transmit Message and Transmit Acknowledgement, re-
sponsible to transmit messages and acknowledgements
respectively. The Boolean expression Ok (s, r) at the
output arc of Transmit Message is true when r is less
than or equal to s and means that the message has been
successfully transmitted. 6 Likewise, Ok (s, r) is used at
the output arc of Transmit Acknowledgement to deter-
mine the probability that an acknowledgement is lost.
Finally, there are four interface (port) places, places A
and D between the Sender and the Network pages and
places B and C between the Network and the Receiver
pages.

The example demonstrated that the choice of a
HHPN to model a complex instance of the producers-
consumers problem facilitates systematic top-down de-
sign by substituting net transitions. Such a choice be-
comes more advantageous in more complex situations
(e.g., in case of multiple receivers).

Fig. 10. Pages of the HCPN depicted in Fig. 9.

5 Such an The bi-directional arc can be equivalently interpreted as a

reserve arc (Lakos and Christensen, 1994), since ®ring of transition

Send Message does not change the marking of place Send.

6 r is supposed to be a random integer value between 1 and 10 and

the probability of a successful transmission is speci®ed by the token in

the place SP. At the initial marking this token has a value of eight, and

thus this probability is equal to 80%.
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5.2. The readers±writers problem

Predicate-Transition Nets (PrT-nets): Fig. 11 dem-
onstrates a PrT-net modeling an instance of the readers±
writers problem. We assume that there are three indi-
vidual users (readers or writers) {a, b, c} of a single re-
source R, which may be used in either ``exclusive'' or
``shared'' mode. These two di�erent modes of operation
are denoted by the identi®ers s (shared) and e (exclu-
sive). Two individual variables, denoted as u and m, are
used to represent an individual user and the mode of
resource usage respectively.

The net consists of six transitions and ®ve places H,
W, U, D, R. Places correspond to predicates and model
the following problem aspects:
· H (u) denotes that user u (reader or writer) has noth-

ing to do with the resource.
· W (u, m) denotes that user u intends to use the re-

source in mode m.
· U (u, m) denotes that user u is using the resource in

mode m.
· D (u, m) denotes that user u has ®nished using the re-

source in mode m.
· R ( ) represents the number of times the resource is

still available for shared usage (i.e., the number of to-
kens accommodated in the resource).
In a PrT-net representation, places correspond to

predicates and they are marked with their extensions
(sets of tuples of individuals). For example, at the initial
marking, predicate H is marked with the user set {a, b,
c} in order to indicate that initially no action takes

place. In order to include ordinary places (like R), they
are treated as zero-place predicates. Arcs are labelled by
sums of tuples of the individual variables u and m, while
the ``zero-tuple'' is denoted by 6�. All transitions, except
the fourth one, are labelled with logical formulas. For
instance, the second transition is labelled with m� s to
indicate that it may ®re only under the ``shared'' oper-
ation mode. An instance of a transition is generated by
replacing the arc variables by individual symbols (tokens
a, b, c and s, m). For the sake of simplicity, Fig. 11 does
not represent the ``shared use'' and the ``exclusive use''.
This situation is explicitly depicted in Fig. 12. The pre-
sented subnet models the fact that place U cannot ac-
commodate two pairs, one of which has an e at its
second position, and thus if one user is using the re-
source in ``exclusive'' mode, no other user is using the
resource at all. Net analysis by invariants (Genrich and
Lautenbach, 1981) can show that transition of Fig. 12
will never be able to ®re (i.e., it is a dead transition).
Modeling with PrT-net retains the identity of the read-

Fig. 12. An additional subnet representing the exclusive resource us-

age.

Fig. 11. A PrT-net representing the readers±writers system.

152 V.C. Gerogiannis et al. / The Journal of Systems and Software 43 (1998) 133±160

daisy
Rectangle



ers±writers, even in a highly condensed representation.
If a PT-net has been used to represent the same problem,
the individual users could not be identi®ed; a PT-net
would represent only the number of the involved users.
However, in such a model it is possible to unfold the
user part (i.e., to design a CE-net), in order to retain the
users' identity. Unfortunately, the size of such a model
would be very large.

CPNs: Fig. 13 demonstrates a CPN modeling the
readers±writers problem in its general form. Any num-
ber of users (readers) are allowed to read data from a
resource, but only one at a time is allowed to update the
data. The shared data object is modeled as a token in the
place Resource. Each ®ring of Read and Update transi-
tions monopolizes the token in the place Resource (i.e.,
uses the resource), and thus simultaneous access is pre-
vented. Although the detailed declarations are not pre-
sented for the sake of simplicity, one can see that
functions (e.g., question, answer, old_value, new_value,
information, done) instead of sums of tuples of variables
are used to label the arcs. Therefore, the net of Fig. 13 is
more intelligible than the corresponding PrT-net of
Fig. 11. In addition, the CPN now represents the gen-
eral (and more abstract) case in which the number of the
involved users is not speci®ed.

CPNs extended with test arcs: Although the CPN of
Fig. 13 ensures data integrity, it does not represent
(true) concurrency between simultaneous ®rings of the
Read transition. In particular, ®ring of either transition
Read or transition Update will consume the token of the
place Resource. This situation is completely appropriate
for the single-write case. However, the multiple-read
case (i.e., multiple users are allowed to read data si-
multaneously) is not modeled. One can solve this
problem by associating a limit with the number of si-
multaneous reads and by creating su�cient tokens for
all of these in the place Resource. Each ®ring of the Read
transition will access only a single token, while each
®ring of the Update transition will change all tokens.
However, such an approach will lead to a complex net
containing additional inscriptions and representing an
exceptional situation (a limited number of simultaneous
reads).

A more appropriate selection for this situation seems
to be the embodiment of a test arc between the Read
transition and the Resource place (Fig. 14). Such an
approach su�ciently models concurrency (i.e., simulta-
neous ®rings of the Read transition) and prevents the net
from additional complexity. Several instances of the
Read transition may simultaneously occur, while no one

Fig. 13. A CPN describing the readers-writers system.

Fig. 14. A CPN with test arcs describing the readers-writers system.
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of them is concurrent to an instance of the Update
transition. This is because the test arc cannot change the
marking of the Resource place, as well as it has lower
priority than the two ordinary arcs between the Re-
source place and the Update transition (i.e., ®ring of
Update still monopolizes the token of Resource making
Read not able to ®re).

5.3. Application speci®c example: modeling user-system
interaction using IMFG

In the following, the IMFG model is used to demon-
strate how hierarchy and composition mechanisms can
be applied to modeling user system interaction via a
HHPN. Fig. 15 shows an IMFG which models an aspect
of the user-system interaction in an authoring environ-
ment, called GENITOR (Kameas and Pintelas, to ap-
pear), which supports the development of intelligent
tutoring applications that use a learning cycle composed
of pedagogical stages. This view is from the authors'
goal-plan decomposition, where the authoring goal of
stage de®nition is decomposed into a set of subgoals, at
least one of which must be achieved (OR decomposition).

The overall goal is represented by context link c. First
of all, GENITOR must be present, so one system action
(event link e: load GENITOR-enable modi®cation) is
necessary. Then c is decomposed into two independent
subgoals indicated by A1 (create new stage entry) and
A2 (edit an existing stage entry). These subgoals can be
achieved by causing events ue1 and ue2, which enable
the ®ring of A1 and A2, respectively. Tokens are pro-

duced at the output event links ue1(OK) and ue2(OK)
(which means that the user event has been processed
successfully) and output context links c;A1(OK) and
c;A2(OK) (corresponding subgoals have been success-
fully achieved).

In Fig. 16, the A1 context actor is re®ned into VA1,
which represents the subgoal ``®ll entry components''
and A1.3, which represents the subgoal ``insert stage
entry''. Group actor VA1 is shown analytically in
Fig. 17. Authors may ®ll a stage entry components ei-
ther by using the system-provided user interface controls
(context actor A1.1) or by typing these values directly
into the provided area called CDA (action actor A1.2).
Context actors A1.1 and A1.2 represent exactly these
two capabilities, which may be indicated by using the
controls menu or by typing inside CDA (actions that are
represented by the user event links ue4 and ue5, re-
spectively).

Tokens are being produced at c;A1;A1.1(OK) and
c;A1;A1.2(OK) after the successful achievement of the
two subgoals, and at ue4(OK) and ue5(OK) after the
corresponding events have been successfully processed.
Furthermore, independently of which of the two ways
authors will select to ®ll the stage entry components, the
context link c;A1;VA1(OK) will carry a token repre-
senting goal achievement. Authors must click on Insert
button (user event ue3) in order to cause the ®ring of
action actor A1.3, which will permanently record the
new entry. Finally, the token produced at c;A1(OK)
shows that the overall goal (create new stage entry) has
been achieved correctly.

Fig. 15. IMFG 1 ± Interacting with GENITOR.
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Note that goal ``create new entry'' has been decom-
posed into subgoals ``®ll entry components'' then ``insert
entry''. Subgoals are ordered with the use of condition
con (entry de®ned), which gets a token after the entry
components have been ®lled. Achievement of these
subgoals requires an action plan of the form: [(use
Controls Menu OR type inside Current Data Area)
AND press insert entry button].

6. Comparison using general criteria

In Sections 4 and 5 we presented a set of categories
for classifying several PN extensions and evaluated
representative PNs expressed in these general ap-

proaches. In the current section we will compare and
contrast the presented categories using a set of appli-
cation criteria which will give reader a better overview of
each category (Table 1). Some of the criteria are quite
general and have been also applied to a survey regarding
formal methods for Abstract Data Types (Ventouris and
Pintelas, 1992); the rest were selected to evaluate addi-
tional issues concerning modeling using PNs. These
criteria include: descriptive power, degree of di�culty in
mastering a method, compactness, ease of analysis, de-
gree of supporting encapsulation-abstraction-re®ne-
ment, and degree of specifying communication. Besides
these criteria discussed in detail below, interested readers
may ®nd in Gerogiannis et al. (1995) a classi®cation
based on categories such as interpretation, characteris-

Fig. 17. IMFG 3 ± Re®nement of group actor VA1.

Fig. 16. IMFG 2 ± Re®nement of context actor A1.
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tics, types and graphical representation of model ele-
ments, as well as application and usage attributes.

Descriptive power: All PN extensions are or can be
computationally equivalent to Turing machines through
the embodiment of inhibitor arcs. However, there is a
di�erent level of descriptive power that characterizes
approaches in each category, which deals with the level
of support that PN formalism provides designers with,
so that they can describe e�ciently their problem. Low-
level PNs have low descriptive abilities since they in-
clude neither primitives to support the treatment of in-
dividuals (distinguishable system elements) nor any
speci®c compositional operators. 7Pure HPNs, unlike
low-level models, do not su�er from the problem of
specifying individuals, but their application to complex
systems modeling usually produces nets which carry
many implementation details. HPNs with modi®ed se-
mantics extend the functionality of arcs, places and
transitions in order to deal e�ciently with practical is-
sues such as true concurrency, zero testing, marking
dependent behaviour etc. HHPNs put emphasis on de-
scribing (synchronous and/or asynchronous) communi-
cation via speci®c compositional methodologies.
Finally, the descriptive power of PNs is further in-
creased by exploiting advantages from other speci®ca-
tion methods (e.g., data abstraction, inheritance,
compositional and communicating operators, synchro-
nization mechanisms etc.).

Degree of di�culty in mastering the method: This
factor in¯uences the practical usefulness and the degree
of adoption of PN-based speci®cations. Generally
speaking, di�culty in mastering a speci®cation method
is related to the ``heaviness'' of its formalism. Therefore,
a semantically rich PN-based formalism, even if it in-
corporates a graphical notation, will require extended

training in order to be applied to software development.
The degree of di�culty in mastering a PN-based ap-
proach varies from medium level for low-level PNs to
high level for the integrated approaches. Nevertheless,
the previous discussion has shown that rich formalisms
allow for a higher descriptive power. Therefore, de-
signers are faced with a choice among models that be-
come more di�cult to learn as they become more
powerful.

Compactness: Compactness is mainly related to
briefness and economy in design. This criterion is in
con¯ict to the level of descriptive power that charac-
terizes a speci®c approach, since primitives of a richer
formalism retain complexity under acceptable limits and
allow for simpler representations. For example, HHPNs
allow for a structured design which prevents ¯at and
cumbersome schemata, while the usage of special arc
types provided by a HPN with modi®ed arc semantics
gives a compact representation of zero testing, set-reset
a place, create a debit token etc. HPNs based on other
speci®cation methods (such as those using semantics
from CSP) are exceptionally suitable in providing min-
imality in specifying communication. On the other hand,
if one adopts design by HPNs or low-level models,
without following a speci®c re®nement or abstraction
methodology, resulted nets will be very complicated.

Ease of analysis: Ease of analysis is one of the most
important factors in software development, since it deals
with the formal veri®cation of system properties. Ease of
analysis allows designers to use the speci®cation as a
proof of correctness tool in order to prove that a system
provides all required functionality and has the desired
(behavioural or structural) properties. As far as analysis
of low-level PNs is concerned, there are well-known
techniques established on algebraic methods and graph
theory algorithms. This is because of the directed-graph
nature and the direct executability of low-level PNs. In
addition to that, useful results can be obtained from the
simulation of the net dynamic behaviour. Analysis of
HPNs is based on methods which generalize on corre-
sponding methods of low-level PNs. Other categories
(e.g., HPNs with modi®ed semantics and HHPNs) often

7 Although several studies have been made to de®ne synthesis in PT-

nets by fusing net places and/or transitions (see for example Kotov,

1979), the composition process in HHPNs, as previously described, is

realized by means of more sophisticated notions such as hierarchies,

speci®c composition operators and place/transition types, composi-

tional analysis methods etc.

Table 1

Comparison of the categories of PN extensions

Criterion PNs HPNs HPNs with

modi®ed

semantics

HHPNs Extensions based on inte-

gration with other speci®-

cation approaches

Descriptive power Low High Very high Very high Very high

Degree of di�culty in Mastering the

method

Low Medium High Very high Very high

Compactness Low High High Very high Very high

Ease of analysis Very high Very high Medium Medium Medium

Degree of supporting Encapsulation-

abstraction-re®nement

Low Medium High Very high Very high

Degree of specifying communication Medium Medium High Very high Very high
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result in nets not directly executable, and consequently,
analysis is performed on an equivalent HPN represen-
tation. However, as previously discussed, there are some
exceptions which use direct analysis techniques; they
construct the reachability graph (e.g., NPNs, Valmari
and Bucholz's approaches) or extend the concept of
place invariants of HPNs (e.g., CPN with channels). The
problem with these exceptions is that they score a low
level comprehensibility and require much more training
in understanding than analysis methods applied to
HPNs or low-level models.

Degree of supporting encapsulation-abstraction-re®ne-
ment: Encapsulation and abstraction are closely related
to the support a formalism provides for net construction
in a hierarchical way that describes only the required
functionality of a part of the modeled system. The main
problem with low-level PNs is that they have no inher-
ent mechanisms that force designers to specify abstract
views of the modeled system. Although HPNs introduce
the concept of colours they still describe a ¯at view on a
complex system. HPNs with modi®ed semantics score a
high degree of encapsulation, since details can be hidden
in net components (e.g., arc inscriptions, transition ac-
tions, token types etc.). HHPNs provide structured
mechanisms (e.g., composition operators and pages) and
allow modular substitution of places and transitions by
more abstract views. Finally, integrated approaches of-
fer abstract constructs (e.g., abstract data types, objects
and channels etc.). In this way, these approaches not
only de®ne the behaviour of nets in terms of their
functional abilities, but also provide designer with an
abstract view of the modeled system. As far as the de-
gree of supporting re®nement is concerned, one may
state analogous assertions, since re®nement stands for
the reverse process of abstraction.

Degree of specifying communication: Communication
between nets is closely related to two important issues:
how are they connected and what is the behaviour of the
composite nets. Both HHPNs and integrated ap-
proaches provide a high level of specifying communi-
cation. They provide designers with explicit primitives to
connect nets by merging transitions, places and/or arcs.
Nevertheless, the proposed methodologies are not
straightforward. As discussed above, if one is interested
in specifying communication attention must be paid to
the following issues:
· ease of analysis (i.e., the properties of each compo-

nent net may be preserved or not),
· tight or loose coupling of the communicating compo-

nent nets and,
· synchronization protocols that prevent undesirable

phenomena and manage exclusive or shared usage
of resources involved in the communication.
All other categories do not have any inherent com-

positional mechanisms, and thus they score rather worse
in specifying communication.

7. Conclusions

Besides PNs, there is a number of other modeling and
speci®cation methods applicable to the same areas, in-
cluding CCITT's Speci®cation and Description Lan-
guage (SDL), State Transition Techniques, Abstract
Data Types, VDM/Meta-IV, Formal Grammars, Tem-
poral Logics, Z Schemas, Process Algebras (CSP, CCS),
STATECHARTS etc. Some ®ne review material related
to such formal methods is available to the interested
reader (e.g., Hall, 1990; Ostro�, 1992; Alur and Hen-
zinger, 1992; Heitmeyer et al., 1995; Hinchey and Bo-
wen, 1995; Saiedian, 1996). A detailed presentation and
comparison of formal speci®cation methods is beyond
the scope of this paper, which has focused on compar-
atively presenting, evaluating and categorizing various
models based on the formalism of PNs, one of the most
popular graphical speci®cation formalisms. A variety of
advantages have been attributed to the application of
formal speci®cation methods. Among them are system-
atic system description and support of rigorous analysis
(veri®cation) techniques which provide software engi-
neers with high con®dence in software correctness. Until
recently, the time needed to perform detailed speci®ca-
tion and analysis has been a restrictive factor for
adopting a formal method. Nowadays, there is a num-
ber of automated tools which can be used to signi®-
cantly reduce the development e�ort. For example,
concerning tools supporting PN based speci®cation we
can mention (among many others) Design CPN (Jensen,
1995), which supports speci®cation and analysis of
CPNs and HCPNs.

The major restriction of low-level PNs is that large
nets are usually needed to describe systems of a medium
complexity. The various higher level models try to
maximize modeling convenience and to provide com-
pact speci®cations. These can be achieved by associating
tokens, places and transitions to multiple types, adding
sets of data variables, supplying inscriptions to express
the more complex enabling and ®ring rules, combine
object-oriented practices, integrate data ¯ows, control
¯ows and state transition diagrams into a uniform and
compact representation and support hierarchies.

If the main intention is analysis, then low-level PNs
should be very applicable. For large and complex sys-
tems, the choice of a powerful high-level PN can be
advantageous in order to reduce system's complexity.
However, the fact that several semantics can be attached
to places, arcs and transitions, results in nets, the entire
structure of which is embedded in the inscriptions;
analysis of these nets is often di�cult to achieve.
Therefore, the resulting net may not visually correspond
to the modeled system in a straightforward manner.

The PN formalism used to represent concurrency and
nondeterminism has been extended to deal with the
strict timing aspects of a real-time system. In general, the
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introduction of time is related to still open questions
regarding the assignment of timing delays (at places,
transitions and/or arcs), the kind of delays (®xed, in-
tervals, stochastic) and the establishment of higher-level
timed PNs which will provide a more compact repre-
sentation. The answer to these questions mainly depends
on the speci®c application area. Perhaps one of the most
general and integrated approaches available for complex
real-time systems design is the Interval Timed Coloured
PN (Aalst, 1993), a HPN in which an interval is used to
specify the timing characteristics by attaching a time
stamp to every token. Assessment and comparative
study of the large class of the various proposed timed
versions of PNs are within the current research interests
of the authors. Our research e�orts are also devoted to
exploiting the experience gained with IMFG and to
embed timing aspects in an extension of the model,
called Real-MFG (Gerogiannis et al., 1996 Gerogiannis
et al., 1997), which are necessary in order to model real-
time interactive systems and in general systems with
time-critical requirements.
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